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LETTER TO THE EDITOR

Test of universal finite-size scaling in two-dimensional site
percolation

A Aharony and D Stauffer†
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Received 20 January 1997, in final form 19 February 1997

Abstract. Traditional two-scale-factor universality, concerning the number of clusters within
a correlation volume near the percolation threshold, is reconfirmed by a comparison of site
percolation on square and triangular lattices. We also test universalityat the threshold, e.g. of
the ratio ξ/L, whereξ is the correlation length andL the lattice size. At the threshold, the
result is sensitive to the system’s shape and aspect ratio, boundary conditions, the algorithm,
the detailed units measuringξ andL, and possibly other factors as yet unexplored.

Near second-order phase transitions, it is not only the critical exponents which are
‘universal’, i.e. independent of lattice type and of many other short-range details for a
given dimensionality, but also certain amplitude combinations [1]. Each such combination
corresponds to a scaling law relating the corresponding critical exponents. For example,
two-scale-factor universality concerns the universality of the singular part of the free energy
within the correlation volume, in units ofkBTc. This corresponds to the hyperscaling
law 2− α = dν, whereα and ν describe the divergence of the specific heat and the
correlation length, respectively, andd is the dimensionality. Less clear is the application of
this universality concept tofinite samples. As the lattice sizeL decreases below the bulk
correlation length, singularities become cut off and replaced by powers ofL (see later). Here
we address the following questions: Does the crossover, where finite-size effects become
clearly noticeable, happen at a universal ratio of crossover lengthL× to the correlation
lengthξ? Does it depend on the quantity under study? Does it depend on the detailed way
by which the relevant quantity is measured? In addition, we study the singularL-dependence
of various quantitiesat the transition point, and discuss possible universal relations among
them. We study these problems for two-dimensional site percolation, where each of the
L× L sites of a large lattice is randomly occupied with probabilityp.

Translating the work of Privman and Fisher [2] from the thermal case to percolation,
and combining it with earlier results on universal amplitude ratios away from the percolation
thresholdpc [3], we assume that the singular part in the cluster number density within a
d-dimensional cube of linear sizeL obeys the scaling form

f (s) = L−dY (C1(p − pc)L
1/ν, C2hL

1/ν) (1)

whereh is the ghost field,ν and1 = β + γ are the critical exponents for connectivity
length and field, respectively, andY is a universal function after an appropriate choice of the
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system dependent non-universal scale factorsC1 andC2. This theory immediately predicts
that atpc one hasf (s) = fc/L

d , with the universal amplitudefc = Y (0, 0). Indeed, the
universality of the amplitudefc was recently observed numerically (and given some heuristic
justification) by Ziff et al [4], for specific aspect ratios and boundary conditions. However,
they did not connect their findings to the above general scaling scheme. A major issue
in the present letter concerns the dependence of the functionY (x, y) on its first argument,
x = C1(p−pc)L

1/ν . One expects that whenx becomes large and negative (or positive) the
results should no longer depend onL, and thusY (x, 0) should behave asCf,±|x|dν , with
the universal coefficientsCf,+ or Cf,− above and belowpc, yieldingf (s) = D±|p−pc|2−α,
with 2−α = γ +2β = dν andD± = Cf,±Cdν1 . The crossover between the two asymptotic
forms of f (s) should occur at some intermediate universal value ofx, which for x < 0
we may call−x×. A possible definition of this value could be whereY (x, 0) deviates
by a certain fraction (say 40%) from its asymptotic formCf,±|x|dν . This then defines a
crossover length,L× = (x×/[C1(pc − p)])ν . An interesting question concerns the relation
of this length to the percolation correlation length, which is defined (apart from a factor

√
2

[5–7]) as the root-mean-square radius of gyration of the finite clusters, which diverges as
ξ = ξ0(pc − p)−ν . Since both lengths are expected to diverge with thesameexponentν,
one is tempted to expect that the ratioL×/ξ = (x×/C1)

ν/ξ0 is universal. Indeed, the theory
of Privman and Fisher [2] also assumes thatξ should obey the scaling relation

ξ = LX(C1(p − pc)L
1/ν, C2hL

1/ν) (2)

with the universal functionX(x, y) and without any additional scale factors. The universal
function depends on shape, boundary condition, and surface fields. Using similar arguments
as above, one concludes that forp < pc and largeL one has the universal behaviour
X(x, 0) = Cξ,−|x|−ν , henceξ0 = Cξ,−C−ν1 , so that indeedL×/ξ is universal. Equation (2)
also predicts thatat pc one hasξ = LX(0, 0), with the universal amplitudeξc = X(0, 0).
This universality is one of the issues discussed in the present letter. Given the universality
of L×/ξ , one can now test universality by using eitherξ or any crossover length coming
from any physical quantity. For example, Kapitulniket al [8] identified a crossover
length fromP∞. A priori, there is no reason that different quantities should not exhibit
crossover at different sizes. The point we emphasize is the universal ratios among these
lengths.

Equation (1) immediately yields expressions for the fraction of sites in the infinite
spanning cluster,P∞ = ∂f (s)/∂h and the mean cluster sizeS = ∂2f (s)/∂h2: P∞ =
C2L

−β/νY ′(x, y) and S = C2
2L

γ/νY ′′(x, y). These imply that atpc one has universal
ratios L−dS/P 2

∞ and (using equation (2))ξ−dS/P 2
∞. Below pc and for largeL one

has S = C(pc − p)−γ and f (s) = D(pc − p)2−α,D = D−, while abovepc one has
P∞ = B(p − pc)

β . The above theories also relate the amplitudesB andC to the scale
factorsC1 andC2 and to universal coefficients arising fromY (x, y), and these result in
universality of any amplitude combination in whichC1 andC2 cancel. Specifically, this
yields, for example, the universality of the ratiosDC/B2 andDξ2

0 [3].
The literature contains several different normalizations of critical quantities: per site,

per occupied site, per unit area. To avoid confusion on this, we have re-evaluated several
such quantities by standard Monte Carlo methods [5]. Specifically, we used the Leath (up
to L = 2001) and the Hoshen–Kopelman (up toL = 105) algorithms [9]. For Leath, one
cluster at a time starts to grow from the centre of a lattice, while for Hoshen–Kopelman all
clusters formed by filling the whole lattice are randomly counted. Mostly, we used Leath
for S andξ and Hoshen–Kopelman forP∞; both programs gave the same results forS and
P∞ away frompc. Comparison atpc is more complex, as discussed below.
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In order to obtain two-scale-factor universality forf (s)ξ d , if the singular ‘free energy’
f (s) is measured per site then the correlation volumeξd should be multiplied by the density
of sites. This can be achieved ifξ is measured not in units of the nearest-neighbour distance
but in units of the square root of the area per site. In the square lattice this distinction does
not matter, but in the triangular lattice thenξ0 is larger by a factor(2/

√
3)1/2 than if measured

in units of the nearest-neighbour distance. We used the normalization ofξ2 by the area per
site. (AlsoS andP∞ are measured as quantities per site and not per occupied site.)

We start by checking universality away frompc. From our numerical simulations we
findB, C, andξ0 to be 0.78, 0.072, and 0.52 on the triangular (TR) and 0.91, 0.102, and 0.52
on the square (SQ) lattice, with accuracy of about 1%. (Here we used the two-dimensional
known exponentsα = −2/3, β = 5/36, γ = 43/18, ν = 4/3 [5].) Domb and Pearce
[10] found D = −4.37 for the triangular lattice and−4.24 for square bond percolation.
Assuming two-scale-factor universality, and noting the fact that series [11] give the same
valueξ0 = 0.52 for both bond and site square lattice percolation, we assume thatD = −4.24
also for square site percolation. With these numbers the traditional universal combinations
give

DC/B2 = −0.52(TR) = −0.52(SQ) (3)

Dξ2
0 = −1.18(TR) = −1.15(SQ) (4)

B2ξ2
0/C = 2.28(TR) = 2.20(SQ). (5)

The differences between TR and SQ are thus smaller than our combined error bars,
and universality is confirmed. (For square bond percolation, Daboulet al [11] found
B2ξ2

0/C ' 2.21.)
For finite systems, exactly atp = pc we have forL× L sites

S = CcL
γ/ν P∞ = BcL

−β/ν ξ = ξcL f (s) = fc/L
d. (6)

We foundBc, Cc andξc to be 0.354, 0.015, and 0.301 for TR and 0.430, 0.023, and 0.314
for SQ, using Leath forS and ξ and Hoshen–Kopelman forP∞, with errors of the order
of 10−3. As stated, theory predicts thatξc should be universal. Figure 1 shows our data in
the form of ξ/L, whereL and ξ are given in units of the square root of the area per site,
which was found in equations (4) and (5) to be appropriate.L can be defined as the square
root of the lattice area (as used for (6)) or as the side length of the lattice, without changing
our conclusions. At least forL > 20, the data for the square lattice are consistently above
those for the triangular one, and the extrapolated values seem to differ by at least 4%. One
way to explain these differences would be to identify the SQ and TR lattices with different
universality classes. In fact, Ziffet al [4] emphasize that theL × L triangular lattice has
an aspect ratio of

√
3/2, and thus need not belong to the same universality class as the

square lattice, with an aspect ratio of 1. Indeed, their values offc for these two lattices
differ by about 0.5%. In addition, possible systematic errors (e.g. with the random number
generators) make it desirable to have independent checks on our calculations, in particular
of figure 1. Our amplitudeξ0 = 0.52 differs from theξ0 = 0.63 for TR of Corstenet al [7],
even though we used roughly their method. (We confirmed, however, their controversial
[12] conclusion that the connectivity length abovepc is about four times, and not two times,
smaller than belowpc at the same small distance frompc.)

As mentioned after equation (2), a further check of universality atpc concerns the ratios
L−dS/P 2

∞ andξ−dS/P 2
∞. Using our results, we find

B2
c/Cc = 8.4(TR) = 8.0(SQ) (7)

B2
cξ

2
c /Cc = 0.76(TR) = 0.79(SQ). (8)
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Figure 1. Ratio of connectivity length (defined via the cluster radii), to system lengthL at the
percolation threshold for nearly 107 SQ (squares,pc = 0.592 746 [14]) and TR (+, diamonds,
pc = 1/2) lattices. Both lengths are normalized in units of the square root of the area per site;
their ratio does not change if they are measured in units of the nearest-neighbour distance. For
TR, we show hereL defined both as side length of the lattice(+) and as (area)1/2 (diamonds).

The two numbers in equation (7) are within the errors of each other. We emphasize again
that equations (7) and (8) usedCc from the Leath algorithm, which stops if the cluster which
started in the lattice centre touches the upper or lower boundary in which case this cluster
is ignored in our averages; periodic boundary conditions were applied horizontally. The
amplitudesCc andξc refer to this algorithm andBc to Hoshen–Kopelman. When we used
the Hoshen–Kopelman algorithm, with free boundaries, counting all clusters even if they
touch the boundaries, the mean cluster size in both lattices has a ten times bigger amplitude
Cc at pc than in the Leath algorithm. This surprising ratio arises due to the fact that in
the Leath algorithm we do not include many of the largest clusters (including the spanning
one, if it exists). Figure 2 showsP 2

∞L
2/S at p = pc, and with all quantities taken from

the Hoshen–Kopelman algorithm; now the two lattices give ratios which differ by about
2%, and this is not likely to be a reflection of our statistical errors (we estimate the error in
each point by 0.1%). Could this be related to different aspect ratios? In any case, we draw
attention to the important fact that universal ratiosat pc depend strongly on the algorithm,
even if their corresponding counterparts away frompc do not.

It has been noticed before that sometimes universality may depend on a variety of
additional parameters, especially exactly at the percolation threshold. For example, the
probability of finding a spanning cluster depends on the aspect ratio [13], the spanning rule
[14, 15] and the boundary conditions [15, 16], although it remains universal when switching
from site to bond percolation [17] or from square to triangular lattice [15]. Thus all our
amplitudes in equation (6) may depend on these details (we checked this explicitly for the
aspect ratio); a square lattice with aspect ratio equal to that of our triangular lattice and
tilted by 45◦ converges nearly to the middle curve in figure 1 for the triangular lattice. At
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Figure 2. Ratio P 2∞L2/S at the percolation threshold for nearly 107 square (top) and
triangular (bottom) lattices. All quantities were obtained using the Hoshen–Kopelman algorithm.

present, the concepts of aspect ratio and of the ‘size’L do not seem to be sufficient for
uniquely describing the lattice. In the present paper we talked about anL×L lattice, which
was sheared by an angle of 60◦ to become triangular. Our results lead us to suspect that,
in general, universality may depend on both this angleand the ratioM/L for anM × L
system. We hope that this paper will stimulate discussions of this point.

In conclusion, although two-scale-factor universality does hold near the percolation
threshold, the statement thatξ/L is universalat the threshold is not obvious, and requires a
careful discussion of the units of bothξ andL, as well as the dependence on the shape of the
sample and other details. Similar questions arise concerning amplitude combinations such
as in equation (7). It would be nice to extend our results to other lattices, of other shapes
and aspect ratios, in order to clarify the correct rules for such units and for universality. It
would also be nice to have more extended tests of the universality of the whole function
Y (x, y), and connect the universal quantities found here with the amplitudefc measured
by Ziff et al. Many of our conclusions also apply to other critical points, and it would be
nice to investigate similar questions for other cases, e.g. for the Ising model.

We thank R M Ziff, V Privman and N Jan for helpful discussions, the German Israeli
Foundation and the SFB 341 for support, and K F A Jülich for time on Cray-T3E.
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